DIFFERENTIAL GEOMETRY AND ITS APPPLICATIONS Proceedings of the Conference August 24 - 30, 1986, Brno, Czechoslovakia

CHARACTERISTIC CLASSES OF SOME PRADINES-TYPE GROUPOIDS AND A GENERALIZATION OF THE BOTT VANISHING THEOREM

Jan Kubarski

<u>ABSTRACT</u>. This paper contains an application of characteristic classes of some Pradines-type groupoids over foliations, constructed by the author in [5]. Using these characteristic classes, we obtain a generalization of the Bott Vanishing Theorem to a flag $\{\mathcal{F},\mathcal{F}'\}$ of foliations \mathcal{F} and \mathcal{F}' . The classical Bott Theorem follows from the above generalization if we put $\mathcal{F} = \{V\}$.

<u>Key words</u>: the Bott Vanishing Theorem, the Chern-Weil homomorphism, Lie groupoid, Pradines-type groupoid over foliation, Lie algebroid.

MS classification: 57R32, 57R30, 57R20, 55N99, 53C05.

<u>1. Pradines-type groupoids $\mathbf{F}^{\mathfrak{F}}$ and their Lie algebroids.</u> There is a well-known definition of a Lie groupoid (see [8]) as a transitive groupoid

$\Phi = (\Phi, \alpha, B, V, \cdot)$

in which Φ and V are Hausdorff C^{∞}-manifolds, the mappings $\alpha, \beta: \Phi \longrightarrow V$ (called a <u>source</u> and a <u>target</u>) are submersions, and $^{-1}: \Phi \longrightarrow \Phi$, $u: V \longrightarrow \Phi$ and $\cdot: \Phi \times \Phi \longrightarrow \Phi$ — defined by the formulae:

This paper is in final form and no version of it will be submitted for publication elsewhere. $^{-1}(h) = h^{-1}$, $u(x) = u_x (u_x - the unit over x)$, $\cdot(g,h) = g \cdot h (\Phi * \Phi = = {(g,h) \in \Phi \times \Phi; ag = Bh}$ is a proper submanifold of $\Phi \times \Phi$) — are of C[°]-class.

Any vector bundle F over V determines the Lie groupoid

$$\mathbf{GL}(\mathbf{F}) = (\mathbf{GL}(\mathbf{F}), \alpha, \mathbf{B}, \mathbf{V}, \bullet)$$

of all linear isomorphisms between fibres of F in which α , β and • are defined by $\alpha(h) = x$ and $\beta(h) = y$ iff $h: F_{|x} \xrightarrow{\approx} F_{|y}$, and $g \cdot h = g \circ h$ if $\alpha(g) = \beta(h)$.

Let $\boldsymbol{\Phi}$ be any Lie groupoid over a manifold V and \mathcal{F} - any foliation of V. Take a subgroupoid

$$\mathbf{\Phi}^{\mathcal{F}} = (\Phi^{\mathcal{F}}, \mathcal{A}^{\mathcal{F}}, \mathcal{B}^{\mathcal{F}}, \mathcal{V}, \bullet)$$

consisting of all elements of Φ such that the source and the target lie on the same leaf of \mathcal{F} . More precisely, $\Phi^{\mathfrak{F}} = (\alpha, \beta)^{-1}[R]$ where $R \subset \mathbb{V} \times \mathbb{V}$ is the equivalence relation given by xRy iff $y \in L_{\chi}$ $(L_{\chi} - \text{the leaf of } \mathcal{F} \text{ through } \chi)$. If $\mathcal{F} = \{\mathbb{V}\}$, then $\Phi^{\mathfrak{F}} = \Phi$. In general $\Phi^{\mathfrak{F}}$ is not a submanifold of Φ . Denote by C the set of all realvalued functions defined on $\Phi^{\mathfrak{F}}$ which can be locally extended to \mathbb{C} -functions on Φ (i.e. $C = \mathbb{C}^{\infty}(\Phi)_{\Phi^{\mathfrak{F}}}$, see [9]). C is a differential structure on $\Phi^{\mathfrak{F}}$ and the pair $(\Phi^{\mathfrak{F}}, \mathbb{C})$ (further denoted briefly by $\Phi^{\mathfrak{F}}$) is a <u>differential space</u> in the sense of R. Sikorski (see [9]). All operations in the groupoid $\Phi^{\mathfrak{F}}$ are smooth in the category of differential spaces.

Because of the submersivity of $\alpha: \Phi \longrightarrow V$, the set $\alpha^{-1}(x)$, $x \in V$, forms a proper C^{*}-submanifold of Φ denoted by $\Phi_x \cdot \Phi_x$ constitutes a principal fibre bundle (for brevity p.f.b.) over V with the-projection $\beta_x: \Phi_x \longrightarrow V$, h \longrightarrow Bh, the isotropy Lie group $G_x = -\beta_x^{-1}(x)$ as the structural Lie group, and the action $\Phi_x \times G_x \longrightarrow \Phi_x$, (h,a) \longmapsto h·a. For the leaf L_x of f through x, on the set

$$\Phi_x^{\mathfrak{F}} := \beta_x^{-1} [L_x]$$

there exists exactly one \mathbb{C}^{\sim} -manifold structure such that if U is open in L_x and $L_{x|U}$ is a proper submanifold of V, then $\mathcal{B}_x^{-1}[U]$ is open in $\Phi_x^{\mathfrak{F}}$ and $\Phi_{x|\mathcal{B}_x}^{\mathfrak{F}}[U]$ is a proper submanifold of Φ_x . Of course, $\Phi_x^{\mathfrak{F}}$ is an immerse submanifold of Φ_x and $\mathcal{B}_x^{\mathfrak{F}}:\Phi_x^{\mathfrak{F}} \longrightarrow L_x$, $h \longrightarrow \beta h$, is a submersion. Besides, $\Phi_x^{\mathfrak{F}}$ forms a p.f.b. over L_x analogously. For each $h \in \Phi^{\mathfrak{F}}$, the mapping $\mathbb{D}_h: \Phi_{\beta h}^{\mathfrak{F}} \longrightarrow \Phi_{\alpha h}^{\mathfrak{F}}$, $g \longmapsto g \cdot h$, is a diffeomorphism.

With the groupoid ${\bf \Phi}^{\mathfrak{F}}$ we associate a vector bundle

$$(A(\Phi^{\mathcal{F}}), p, V)$$

where $A(\Phi^{\mathfrak{F}}) = \bigcup_{x \in V} T_{u_x} \Phi_x^{\mathfrak{F}} \subset T \Phi$ and p(v) = x iff $v \in T_{u_x} \Phi_x^{\mathfrak{F}}$, $x \in V$. Moreover,

$$\beta_*: \mathbb{A}(\Phi^{\mathfrak{F}}) \longrightarrow \mathbb{T}^{\mathfrak{F}}, v \longmapsto \mathbb{B}_* v,$$

is an epimorphism. Therefore, it is not difficult to see that $\mathbf{F}^{\mathbf{F}}$ is a <u>Pradines-type groupoid over the foliation $\mathcal{F}(\text{see [4], [5]})$.</u>

A smooth vector field X on the differential space $\Phi^{\mathfrak{F}}$ (see [9]) is called <u>right-invariant</u> if

(a) $X_h \in T_h \Phi_{ah}^{\mathcal{F}}$, he $\Phi^{\mathcal{F}}$,

(b) $(D_h)_{*g} X_g = X_{gh}, g, h \in \Phi^{5}, ag = Bh.$

Each right-invariant vector field X on $\Phi^{\mathcal{F}}$ determines a C[~]-section X₀:V $\longrightarrow A(\Phi^{\mathcal{F}})$, x $\mapsto X(u_x)$, of p. Conversely (see [5]),

<u>PROPOSITION 1</u>. For any C[°]-section $\xi: V \to A(\Phi^{\mathfrak{S}})$ of p, there exists exactly one right-invariant vector field ξ' on $\Phi^{\mathfrak{S}}$ such that $\xi'(u_x) = \xi(x)$, xeV. The bracket $\mathfrak{l}\xi, \gamma \mathfrak{l} := \mathfrak{l}\xi', \gamma' \mathfrak{I}_0$ defines in the vector space Sec $A(\Phi^{\mathfrak{S}})$ of all C[°]-sections of p a real Lie algebra structure. PROPOSITION 2. The system

 $\mathcal{A}\left(\Phi^{\mathfrak{F}}\right) = \left(A(\Phi^{\mathfrak{F}}), \llbracket \cdot, \cdot \rrbracket, \tilde{B}_{\star}^{\mathfrak{F}}\right)$

is a Lie algebroid (in the sense of J. Pradines [6], [7]).

With the Lie algebroid $\mathcal{A}(\Phi^{\mathfrak{F}})$ we associate a short sequence of vector bundles over V

$$0 \longrightarrow \mathcal{G} \xrightarrow{\Gamma} \mathcal{A}(\Phi^{\mathfrak{F}}) \xrightarrow{\mathcal{V}} \mathcal{T} \mathfrak{F} \longrightarrow \mathcal{C}$$

where γ denotes, for brevity, the mapping $\tilde{B}_{\star}^{\gamma}$, and $g := \text{Ker}\gamma$. Of course, g is independent of the choice of γ . Each fibre $g_{|x}$, $x \in V$, is a Lie algebra with respect to the bracket $[v,w] := I_{\varsigma}, \gamma I(x)$ where $\xi, \gamma \in \text{Sec A}(\Phi^{\varsigma})$ are such that $\xi(x) = v, \gamma(x) = w$. Moreover, $\Im_{|x|}$ is the Lie algebra of the isotropy Lie group G_{x} .

If $\Phi = GL(F)$, then g is canonically isomorphic to Hom(F;F).

<u>2. CONNECTIONS IN $\mathscr{A}(\Phi^{\mathfrak{F}})$ </u>. By a <u>connection in $\mathscr{A}(\Phi^{\mathfrak{F}})$ (see [5])</u> we mean any mapping

$$A: T\mathcal{F} \longrightarrow A(\Phi^{\mathcal{F}})$$

such that $\gamma \circ \lambda = id_{max}$.

<u>PROPOSITION 3</u>. Connections in $\mathcal{A}(\Phi^{\mathcal{F}})$ are in one-to-one correspondence with partial connections in the p.f.b. $\Phi_{\mathbf{X}}$ projectable onto TF (for definition of a partial connection see [3]).

<u>Proof.</u> A connection λ determines a partial connection H^{λ} in Φ_{x} by the formula $H_{h}^{\lambda} := Im((D_{h})_{*} u_{\beta h}^{})$. The correspondence $\lambda \longrightarrow H^{\lambda}$ is the sought-for bijection. q.e.d.

For a connection λ in $\mathcal{A}(\Phi^{\mathcal{F}})$, the uniquely determined morphism $\omega: A(\Phi^{\mathcal{F}}) \longrightarrow \mathcal{G}$

fulfilling ω |g = id and ω | Im λ = 0 is called a <u>connection form of</u> λ .

192

Let F be any vector bundle over V. ^By a $\underbrace{\mathbb{C}^{\sim}-\text{form of degree }q}_{\text{on TFwith values in F}}$ we shall mean each $\underbrace{\mathbb{C}^{\sim}-\text{section of the}}_{\text{bundle}}$

$$\wedge^{\mathbf{q}}(\mathtt{TF})^{\star}\otimes \mathtt{F}.$$

. The set

 Ω (TF;F)

of all such forms is a graded module over $C^{\infty}(V)$. Moreover, it has a structure of a module over the algebra

 $\Omega(TF;\mathbb{R})$

of all real-valued C^{∞} -forms on TF.

By a curvature base-form (or a curvature tensor) of a connection λ we shall mean the form

defined by the formula $\Omega_{B}(X,Y) = -\omega(\mathbb{D} \circ X, \lambda \circ Y\mathbb{I}), X, Y \in Sec T \mathcal{F}$.

<u>PROPOSITION 4</u>. $[\lambda \times , \lambda \times Y] = \lambda \circ [X, Y] - \Omega_{B}(X, Y)$.

3. The Chern-Weil homomorphism for $\underline{\Phi}^{\mathfrak{F}}$. The groupoid $\underline{\Phi}^{\mathfrak{F}}$ acts on the bundle \underline{q} by the <u>adjoint representation $Ad^{\mathfrak{F}}$ </u> defined by

$$d^{r}(h) = (\tau_{h})_{*} u_{x} \xrightarrow{\approx} g_{1y}, h \in \Phi^{r}$$

where $\tau_h: G_x \longrightarrow G_y$, a \longmapsto hah⁻¹, x=dh, y=Bh.

Let $\sqrt[k]{g}^*$ be the k-symmetric power of g^* . Denote by $(Ad^{\mathfrak{F}})^{\vee}$ the action of $\Phi^{\mathfrak{F}}$ on $\sqrt[k]{g}^*$ induced by $Ad^{\mathfrak{F}}$. A section $\Gamma \in \operatorname{Sec} \sqrt[k]{g}^*$

is called $\underline{Ad}^{\mathcal{F}}$ -invariant if $(\underline{Ad}^{\mathcal{F}})^{\vee}(\underline{h})(\Gamma_{\alpha \underline{h}}) = \Gamma_{\beta \underline{h}}$ for each $\underline{h} \in \Phi^{\mathcal{F}}$. The set of all $\underline{Ad}^{\mathcal{F}}$ -invariant sections of the bundle $\bigvee_{\alpha}^{\mathbf{k}}$ is denoted by

 $(\operatorname{Sec} \bigvee_{q}^{k})_{1}^{q}$

Of course, $\bigoplus^{k} (\sec^{k} g^{*})_{I}^{\mathcal{F}}$ forms an algebra.

If $\mathcal{F} = \{V\}$, then the letter \mathcal{F} in the symbols $\operatorname{Ad}^{\mathcal{F}}$, $(\operatorname{Ad}^{\mathcal{F}})^{\vee}$ and $(\operatorname{Sec} \bigvee_{\mathcal{O}_{\mathcal{F}}}^{k})_{\mathsf{T}}^{\mathcal{F}}$ will be omitted.

We have $(\operatorname{Sec}^{k} \mathfrak{g}^{*})_{I} \subset (\operatorname{Sec}^{k} \mathfrak{g}^{*})_{I}^{\mathfrak{F}}$

<u>PROPOSITION 5</u>. Each Ad^{\$}-invariant section of $\bigvee_{\mathcal{G}}^{\mathbf{k}}$ is equal to $\sum_{i} f^{i} \Gamma_{i}$ for some C[°]-functions f^{i} constant along the leaves of F and for some Ad-invariant sections Γ_{i} .

<u>PROPOSITION 6</u>. The algebra $\bigoplus^k (\operatorname{Sec} \bigvee^k g^*)_I$ of all Ad-invariant sections is canonically isomorphic to the algebra $(\bigvee^g g^*)_I$ of all invariant polynomials on g_{IX} with respect to the adjoint representation of G_X on g_{IX} , xeV. This isomorphism is built with the help of the family of isomorphisms Ad(h), he Φ_v .

Let $\lambda: \mathtt{TF} \longrightarrow \mathtt{A}(\Phi^{\mathtt{S}})$ be any connection $\mathtt{in} \mathscr{A}(\Phi^{\mathtt{S}})$ and $\Omega_{\mathtt{B}} \in \Omega^2(\mathtt{TF}; \mathfrak{A})$ - its curvature base-form. We define the following homomorphism of algebras

$$\Upsilon^{\mathfrak{s}}: \oplus^{k}(\operatorname{Sec}^{k} \mathfrak{g}^{*})_{\mathrm{I}}^{\mathfrak{s}} \longrightarrow \mathfrak{Q}(\operatorname{T}\mathfrak{s}; \mathbb{R}), \ \Gamma \longmapsto \Gamma_{*}(\Omega_{\mathrm{B}}, \ldots, \Omega_{\mathrm{B}}),$$

where $\Gamma \in \operatorname{Sec} \bigvee_{\mathfrak{A}}^{k} \mathfrak{f}^{*}$ is treated as a symmetric k-linear homomorphism $\mathfrak{A} \times \ldots \times \mathfrak{A} \longrightarrow \mathbb{R}$ via the isomorphism $\bigvee_{\mathfrak{A}}^{k} \mathfrak{f}^{*} \mathfrak{f}_{\mathfrak{S}}^{k} \mathfrak{f}_{\mathfrak{S}}^{k} \mathfrak{f}_{\mathfrak{S}}^{k}$, $t_{1} \vee \ldots \vee t_{k} \longmapsto ((v_{1}, \ldots, v_{k}) \longmapsto \frac{1}{k!} \sum_{\mathfrak{S}} t_{\mathfrak{S}(1)}(v_{1}) \cdot \ldots \cdot t_{\mathfrak{S}(k)}(v_{k}))$ and $\Gamma_{\mathfrak{f}}^{*} (\Omega_{\mathfrak{B}}, \ldots, \Omega_{\mathfrak{B}}) \in \Omega^{2k}(\mathfrak{T}\mathfrak{f}\mathfrak{f}\mathfrak{R})$ is defined by the formula $\Gamma_{\mathfrak{f}}^{*} (\Omega_{\mathfrak{B}}, \ldots, \Omega_{\mathfrak{B}}) (\mathfrak{x}\mathfrak{f}_{\mathfrak{I}} \cdot \ldots \cdot \mathfrak{v}_{2k})$ $= \frac{1}{2^{k}} \sum_{\mathfrak{S}} \operatorname{sgn} \mathcal{F}_{\mathfrak{X}}^{*} (\Omega_{\mathfrak{B}}(\mathfrak{x}\mathfrak{f}\mathfrak{v}_{\mathfrak{S}(1)}, v_{\mathfrak{S}(2)}), \ldots, \Omega_{\mathfrak{B}}(\mathfrak{x}\mathfrak{f}\mathfrak{v}_{\mathfrak{S}(2k-1)}, v_{\mathfrak{S}(2k)})).$ Now, we define \mathfrak{a} differential operator

$$d^{TF}: \Omega(TF; \mathbb{R}) \longrightarrow \Omega(TF; \mathbb{R})$$

by (for a form Θ of degree q)

194

$$d^{T} \mathcal{F}_{\Theta}(X_{o}, \dots, X_{q}) = \sum_{j=0}^{q} (-1)^{j} X_{j}(\Theta(X_{o}, \dots, \hat{X_{j}}, \dots, X_{q})) + \sum_{i < j} (-1)^{i+j} \Theta(IX_{i}, \hat{X_{j}}, \dots, \hat{X_{i}}, \dots, \hat{X_{j}}, \dots).$$

Let H(TF;R) be the cohomology algebra of the complex $(\Omega(TF;R),d^{TF})$.

We have the following two theorems which are particular cases of general theorems on the theory of cohomology of Pradines--type groupoids over foliations (see [6]).

THEOREM 1.
$$d^{T} \tilde{J} \gamma \tilde{J} = 0.$$

This theorem allows us to define the following homomorphism of algebras

$$h_{\Phi^{F}}: \oplus^{k}(\operatorname{Sec}^{k} \mathfrak{g}^{*})_{1}^{F} \longrightarrow H(\operatorname{TF}; \mathbb{R}), \Gamma \longmapsto \mathfrak{l} \Upsilon^{F}(\Gamma) 1.$$

<u>THEOREM 2</u>. $h_{\underline{\Psi}^{\overline{F}}}$ is independent of the choice of connection. <u>DEFINITION</u>. We shall call the homomorphism $h_{\underline{\Psi}^{\overline{F}}}$ the <u>Chern-</u> <u>-Weil homomorphism for $\underline{\Phi}^{\overline{F}}$ </u>. Its image $\mathrm{Im}h_{\underline{\Psi}^{\overline{F}}}$ is called the <u>Pontryagin algebra for $\underline{\Phi}^{\overline{F}}$ </u> and denoted by $\mathrm{Pont}(\underline{\Phi}^{\overline{F}})$.

<u>REMARK.</u> If $\mathcal{F} = \{V\}$, then the superposition

$$(\bigvee g_{1x}^{*})_{I} \cong \bigoplus^{k} (\operatorname{Sec} \bigvee g^{*})_{I} \longrightarrow H(\operatorname{TV}_{iR}) = H_{dR}(V)$$

is the classical Chern-Weil homomorphism for the p.f.b. Φ_x .

<u>4. A generalization of the Bott Vanishing Theorem.</u> As an application of the characteristic classes described above we give <u>THEOREM 3.(A generalization of the Bott Vanishing Theorem</u>) Let $\{\$, \$'\}$ be a flag of foliations \$ and \$' on V. If $T\$=T\$' \oplus F$

then Pont^k(**GL**(F)^{\mathbf{F}}) = 0 for k > 2 • rank F.

(1) $\nabla^{\lambda}: \operatorname{Sec} F \longrightarrow \Omega^{1}(TF;F)$

by the formula

(2) $\nabla_{v}^{\lambda} \vec{\sigma} = (\lambda v)(\vec{\sigma}_{x}), v \in (TS)_{|x}, \vec{\sigma} \in Sec F,$ where $\vec{\sigma}_{x} := \vec{\sigma} | GL(F)_{x} : GL(F)_{x} \longrightarrow F_{|x}$ and $\vec{\sigma} : GL(F) \longrightarrow F, h \mapsto h^{-1}(\vec{\sigma}_{\beta h})$

 ∇^{λ} is linear and fulfils the conditions (a) $\nabla^{\lambda}_{fX} \delta = f \nabla^{\lambda}_{X} \delta$, (b) $\nabla^{\lambda}_{X} f \delta = X(f) \delta + f \nabla^{\lambda}_{X} \delta$ where XeSec TF, $\delta \in Sec F$, $f \in C^{\infty}(V)$.

Any linear operator (1) such that (a) and (b) hold is called a <u>covariant derivative in (F, \mathcal{F}) (or, after [3], a partial con-</u><u>nection in F with respect to \mathcal{F}).</u>

<u>LEMMA 1</u>. The correspondence $\lambda \mapsto \nabla^{\lambda}$ establishes a bijection between connections in $\mathcal{A}(GL(F)^{\mathfrak{F}})$ and covariant derivatives in (F, \mathfrak{F}) .

Proof of lemma 1. It is sufficient to show that

(i) for $v \in (T^{\mathfrak{F}})_{1x}$, $x \in V$, a vector $\lambda v \in A(GL(F)^{\mathfrak{F}})_{1x}$ satisfying $\Upsilon(\lambda v) = v$ is, by (2), uniquely determined,

(ii) the mapping $\lambda: T\mathcal{F} \longrightarrow A(GL(\mathcal{F})^{\mathcal{F}})$, $v \longmapsto \lambda v$, is of the C^{∞}-class.

(i) and (ii) easily follow from local calculations.

By a curvature tensor of a covariant derivative \overline{V} in (F,F) we mean a tensor

 $R\in \Omega^2(T_{F};Hom(F;F))$

defined by the formula $R_{X,Y} = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$ for X, YeSec TF, $\mathcal{E} \in Sec F$.

<u>LEMMA 2.</u> The curvature tensor R of ∇^{λ} is equal to the curvature base-form $\Omega_{\rm B}$ of λ .

Proof of lemma 2. By proposition 4, we have

196

 $R_{X,Y}^{\sigma} = \lambda X((\lambda Y)(\tilde{\sigma})^{\sim}) - \lambda Y((\lambda X)(\tilde{\sigma})^{\sim}) - (\lambda [X,Y])(\tilde{\sigma})$

 $= (\mathbf{I}\lambda\mathbf{X}, \lambda\mathbf{Y}\mathbf{I} - \lambda \, [\mathbf{X}, \mathbf{Y}\mathbf{I})(\tilde{\boldsymbol{\sigma}}) = -\Omega_{\mathbf{B}}(\mathbf{X}, \mathbf{Y})(\tilde{\boldsymbol{\sigma}}) = \Omega_{\mathbf{B}}(\mathbf{X}, \mathbf{Y})(\boldsymbol{\sigma}).$

Continuing the proof of theorem 3, we construct (analogously to Bott [1]) a covariant derivative in (F,F) whose curvature tensor R has the property $R_{X,Y}=0$ for all X, Y e Sec TF'. For the purpose, take any covariant derivative \overline{V} in (F,F). For X e Sec TF= =Sec TF' \oplus Sec F, write X=X_F, + X_F where X_F e Sec TF' and X_F e Sec F.

Then define $\nabla_X d = \pi [X_{Y'}, d] + \overline{\nabla}_{X_F} d$ for X Sec TF, desce F, where $\pi: TF' \oplus F \longrightarrow F$ is the projection onto the second factor. It is not difficult to see that this formula defines a covariant derivative in (F,F) which fulfils therequirement condition. By lemma 1, there exists a connection λ in $\mathcal{A}(GL(F)^Y)$ such that $\nabla^{\lambda} = \nabla$. By lemma 2, the curvature base-form Ω_B of λ has the property $\Omega_B(X,Y) = 0$ for all $X, Y \in Sec TY'$.

Using the decomposition $(T\mathfrak{F})_{|\mathbf{x}} = (T\mathfrak{F}')_{|\mathbf{x}} \oplus \mathbb{F}_{|\mathbf{x}}$, we see that $\Upsilon^{\mathfrak{F}}(\Gamma) = 0$ for $\Gamma \in (\operatorname{Sec} \bigvee_{q}^{k})_{I}^{\mathfrak{F}}$ such that k>rankF. q.e.d.

<u>REMARK</u>. Let $\Phi = GL(F)$ and let F be as in theorem 3. By remark 33 from [5], we have that the Chern-Weil homomorphisms h_{Φ_x} , $h_{\Phi_x^3}$ of p.f.b.'s Φ_x and Φ_x^3 , respectively, and h_{Φ^3} of the Pradines-type groupoid Φ^5 are connected by the commuting diagram

$$\operatorname{id} \begin{pmatrix} \begin{pmatrix} k & (\mathfrak{g}_{1x})^{*} \end{pmatrix}_{1} & \xrightarrow{h_{\mathfrak{F}_{x}}} & \operatorname{H}_{dR}^{2k}(V) \\ \downarrow & \downarrow & \downarrow \\ (\operatorname{Sec} & \langle \mathfrak{g}_{1x}^{*} \rangle_{1}^{\mathfrak{F}} & \xrightarrow{h_{\mathfrak{F}_{x}}^{\mathfrak{F}}} & \operatorname{H}^{2k}(T\mathfrak{F};\mathbb{R}) \\ \downarrow & \downarrow & \downarrow \\ (\bigvee^{k} & (\mathfrak{g}_{1x})^{*} \rangle_{1} & \xrightarrow{h_{\mathfrak{F}_{x}}^{\mathfrak{F}}} & \operatorname{H}_{dR}^{2k}(L_{x}) & \downarrow \end{pmatrix}$$

For k>rank F, the bottom row is zero by the classical Bott Vanishing Theorem applied to the foliation \mathcal{F}'_{L_x} of L_x , $x \in V$, which - of course - also follows from the vanishing of the middle row. REFERENCES.

- [1] R. B o t t, Lectures on characteristic classes and foliations, Lecture Notes in Math. Vol 79, Springer-Verlag, Berlin, Heidelberg, New York (1972),
- [2] C h. E h r e s m a n n, Les connexions infinitesimales dans un espace fibre differentiable, Colloq. Topologie (Bruxelles) 1950, Liege 1951,
- [3] F. Kamber, Ph. Tondeur, Foliated Bundles and Characteristic Classes, Lectures Notes in Math. Vol 493, Springer-Verlag, ^Berlin, Heidelberg, New York (1975),
- [4] J. K u b a r s k i, Smooth groupoids over foliations and their algebroids. Part 1, Preprint Nr 1, May 1986, Institute of Mathematics, Technical University of Łódź,
- (51 ______, Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism, Preprint Nr 2, August 1986, Institute of Mathematics, Technical University of Łódź,
- [6] J. Pradines, Theorie de Lie pour les groupoides differentiables. Calcul differential dans la categorie des groupoides infinitesimaux, C.R.Acad.Sc.Paris, t.264 (1967), p.245--248,
- [7] _____, Theorie de Lie pour les groupoides differentiables, Atti del Convegna Internazionale di Geometria Differenziale (Bologna), 28-30, IX, 1967,
- [8] N. V. Q u e, Du prolongement des eapaces fibres et des structures infinitesimales, Ann. Inst. Fourier. Grenoble, 17,1, 1967, p. 157-223,
- [9] R. S i k o r s k i, Abstract covariant derivative, Colloq. Math. 18 (1967), p.251-272.

Institute of Mathematics Technical University of Łódź Al. Politechniki 11 90-924 Łódź P O L A N D

Received October 21, 1986