DIFFERENTIAL GEOMETRY AND ITS APPPLICATIONS

CHARACTERISTIC CLASSES OF SOME PRADINES-TYPE GROUPOIDS AND

A GENERALIZATION OF THE BOTT VANISHING THEOREM

Jan Kubarski

ABSTRACT. This paper contains an application of characteristic classes of some Pradines-type groupoids over foliations, constructed by the author in [5]. Using these characteristic classes, we obtain a generalization of the Bott Vanishing Theorem to a flag $\left\{\mathcal{F}, \mathcal{F}^{\prime}\right\}$ of foliations \mathcal{F} and \mathcal{F}^{\prime}. The classical Bott Theorem follows from the above generalization if we put $\mathcal{F}=\{V\}$.

Key words: the Bott Vanishing Theorem, the Chern-Weil homomorphism, Lie groupoid, Pradines-type groupoid over foliation, Lie algebroid.

MS classification: 57R32, 57R30, 57R20, 55N99, 53C05.

1. Pradines-type groupoids $\Phi^{\mathcal{F}}$ and their Lie algebroids. There is a well-known definition of a Lie groupoid (see [81) as a transitive groupoid

$$
\Phi=(\Phi, \alpha, \beta, V, \cdot)
$$

in which Φ and V are Hausdorff $C^{\infty}-$ manifolds, the mappings $\alpha, \beta: \Phi \rightarrow V$ (called a source and a target) are submersions, and $-1: \Phi \rightarrow \Phi, u: V \rightarrow \Phi$ and $\cdot: \Phi * \Phi \rightarrow \Phi$ - defined by the formulae:

This paper is in final form and no version of it will be submitted for publication elsewhere.
${ }^{-1}(h)=h^{-1}, u(x)=u_{x}\left(u_{x}-\right.$ the unit over $\left.x\right),:(g, h)=g \cdot h(\Phi * \Phi=$ $=\{(\mathrm{g}, \mathrm{h}) \in \Phi \times \Phi ; \alpha \mathrm{g}=\mathrm{Bh}\}$ is a proper submanifold of $\Phi \times \Phi)$ - are of C^{∞}-class.

Any vector bundle F over V determines the Lie groupoid

$$
G L(F)=(G L(F), \alpha, \beta, V, \cdot)
$$

of all linear isomorphisms between fibres of F in which α, B and - are defined by $\alpha(h)=x$ and $B(h)=y$ iff $h: F_{I_{x}} \xlongequal{\approx} F_{I_{y}}$, and $g \bullet h=g \circ h$ if $\alpha(g)=B(h)$.

Let Φ be any Lie groupoid over a manifold V and \mathcal{F} - any foliation of V. Take a subgroupoid

$$
\Phi^{F}=\left(\Phi^{F}, \alpha^{F}, B^{F}, V, \cdot\right)
$$

consisting of all elements of Φ such that the source and the target lie on the same leaf of \mathcal{F}. More precisely, $\Phi^{F}=(\alpha, B)^{-1}[R]$ where $R \subset V \times V$ is the equivalence relation given by $x R y$ iff $y \in L_{x}$. (L_{x} - the leaf of \mathcal{F} through x)。If $\mathcal{F}=\{\mathrm{V}\}$, then $\Phi^{\mathcal{F}}=\Phi$. In general $\Phi^{\tilde{F}}$ is not a submanifold of Φ. Denote by C the set of all real--valued functions defined on Φ^{9} which can be locally extended to C^{∞}-functions on Φ (i.e. $C=C^{\infty}(\Phi)_{\Phi^{\mp}}$, see [91). C is a differential structure on Φ^{9} and the pair (Φ^{F}, C) (further denoted briefly by Φ^{F}) is a differential space in the sense of R. Sikorski (see [9]). All operations in the groupoid $\boldsymbol{\Phi}^{\boldsymbol{g}}$ are smooth in the category of differential spaces.

Because of the submersivity of $\alpha: \Phi \rightarrow V$, the set $\alpha^{-1}(x), x \in V$, forms a proper C^{∞}-submanifold of Φ denoted by $\Phi_{x} \cdot \Phi_{x}$ constitutes a principal fibre bundle (for brevity p.f.b.) over V with the-projection $B_{x}: \Phi_{x} \rightarrow V, h \mapsto B h$, the isotropy Lie group $G_{X}=$ ${ }^{*} \beta_{x}{ }^{-1}(x)$ as the structural Lie group, and the action $\Phi_{X} \times G_{X} \rightarrow \Phi_{X},(h, a) \mapsto h \cdot a$.

For the leaf L_{x} of \mathcal{F} through x, on the set

$$
\Phi_{\mathrm{x}}^{\Phi}:=\beta_{\mathrm{x}}^{-1}\left[L_{\mathrm{x}}\right]
$$

there exists exactly one C^{∞}-manifold structure such that if U is open in I_{x} and $\mathrm{I}_{\mathrm{x} / \mathrm{U}}$ is a proper submanifold of V , then $\mathrm{B}_{\mathrm{x}}^{-1}$ [U] is open in Φ_{X}^{F} and $\Phi_{X \mid B_{X}^{-1}[U]}^{F}$ is a proper submanifold of Φ_{X}. Of course, $\Phi_{\mathrm{x}}^{\mathcal{F}}$ is an immerse submanifold of Φ_{x} and $\mathcal{B}_{\mathrm{x}}^{\mathcal{F}}: \Phi_{\mathrm{x}}^{\mathcal{F}} \rightarrow \mathrm{I}_{\mathrm{x}}$, $h \mapsto B h$, is a submersion. Besides, $\Phi_{\mathrm{x}}^{\mathscr{F}}$ forms a p.f.b. over L_{x} analogously. For each $h \in \Phi^{\mathcal{F}}$, the mapping $D_{h}: \Phi_{\beta h}^{F} \rightarrow \Phi_{\alpha h}^{q}, g \mapsto g \cdot h$, is a diffeomorphism.

With the groupoid Φ^{9} we associate a vector bundle

$$
\left(A\left(\Phi^{\Phi}\right), p, V\right)
$$

 over,

$$
\tilde{B}_{*}^{\mathcal{G}}: A\left(\Phi^{\mathcal{F}}\right) \rightarrow \mathrm{T}^{\mathrm{CF}}, \quad \mathrm{~V} \mapsto \mathrm{~B}_{*} \mathrm{~V},
$$

is an epimorphism. Therefore, it is not difficult to see that $\boldsymbol{\Phi}^{F}$ is a Pradines-type groupoid over the foliation F (see [4], [5]).

A smooth vector field X on the differential space Φ^{5} (see [9I) is called right-invariant if
(a) $X_{h} \in T_{h} \Phi_{\alpha}^{F}, h \in \Phi^{F}$,
(b) $\left(D_{h}\right)_{*} \mathrm{X}_{\mathrm{g}}=\mathrm{X}_{\mathrm{gh}}, \mathrm{g}, \mathrm{h} \in \Phi^{F}, \alpha \mathrm{~g}=\beta \mathrm{Bh}$.

Each right-invariant vector field X on Φ^{F} determines a C^{∞}-section $X_{0}: V \rightarrow A\left(\Phi^{\mathscr{I}}\right), x \mapsto X\left(u_{X}\right)$, of p. Conversely (see [5]),

PROPOSITION 1. For any C^{∞}-section $\xi: V \rightarrow A\left(\Phi^{s}\right)$ of p, there exists exactly one right-invariant vector field ξ^{\prime} on Φ^{Φ} such that $\xi^{\prime}\left(u_{x}\right)=\xi(x), x \in V$. The bracket $\mathbb{G}, \eta \mathbb{\eta}:=\left[\xi^{\prime}, \eta^{\prime}\right]_{0}$ defines in the vector space $\operatorname{Sec} A\left(\Phi^{F}\right)$ of all C^{∞}-sections of p a real $L_{i e}$ algebra structure.

PROPOSITION 2. The system

$$
A\left(\Phi^{\mathcal{F}}\right)=\left(A\left(\Phi^{\tilde{F}}\right), \mathbb{[} \cdot, \cdot \mathbb{\rrbracket}, \tilde{B}_{\star}^{\mathcal{F}}\right)
$$

is a Lie algebroid (in the sense of J. Pradines [6], [7]).
With the Lie algebroid $\mathcal{A}\left(\Phi^{5}\right)$ we associate a short sequence of vector bundles over V

where γ denotes, for brevity, the mapping $\tilde{B}_{*}^{\mathcal{F}}$, and $g:=\operatorname{Ker} \gamma$. Of course, g is independent of the choice of \mathcal{F}. Each fibre $g_{1 x}, x \in V$, is a $L_{i e}$ algebra with respect to the bracket $[v, w]:=\mathbb{Z}, \eta \mathbb{I}(x)$ where $\xi, \eta \in \operatorname{Sec} A\left(\Phi^{\xi}\right)$ are such that $\xi(x)=v, \eta(x)=w$. Moreover, $g_{l x}$ is the Lie algebra of the isotropy Lie group G_{x}.

If $\Phi=G I_{\infty}(F)$, then g is canonically isomorphic to $\operatorname{Hom}(F ; F)$.
2. CONNECTIONS IN $\mathcal{A}\left(\Phi^{\mathcal{F}}\right)$. By a connection in $\mathscr{A}\left(\Phi^{F}\right)$ (see [5]) we mean any mapping

$$
\lambda: T \mathcal{F} \longrightarrow A\left(\Phi^{F}\right)
$$

such that $\gamma_{0 \lambda}=i d_{T F}$.
PROPOSITION 3. Connections in $A\left(\Phi^{F}\right)$ are in one-to-one correspondence with partial connections in the p.f.b. Φ_{x} projectable onto TF (for definition of a partial connection see [3]).

Proof. A connection λ determines a partial connection H^{λ} in Φ_{x} by the formula $H_{h}^{\lambda}:=\operatorname{Im}\left(\left(D_{h}\right)_{* u_{B h}}{ }^{c \lambda} l_{\mid B h}\right)$. The correspondence $\lambda \longmapsto H^{\lambda}$ is the sought-for bijection. q.e.d.

Por a connection λ in $A\left(\Phi^{F}\right)$, the uniquely determined morphism $\omega: A\left(\Phi^{\mp}\right) \longrightarrow g$
fulfilling $\omega / g=i d$ and $\omega \mid \operatorname{Im} \lambda=0$ is called a connection form of入。

Let F be any vector bundle over V. By a C^{∞}-form of degree q on $T \mathcal{F}$ with values in F we shall mean each C^{∞}-section of the bundle

$$
\Lambda^{q}(T \mathcal{F})^{*} \otimes F
$$

The set

$$
\Omega(T \mathcal{T} ; F)
$$

of all such forms is a graded module over $\mathrm{C}^{\infty}(\mathrm{V})$. Moreover, it has a structure of a module over the algebra

$$
\Omega(\mathbb{T F} ; \mathbb{R})
$$

of all real-valued C^{∞}-forms on $T F$.
By a curvature base-form (or a curvature tensor) of a coneaction λ we shall mean the form

$$
\Omega_{B} \in \Omega^{2}(T F ; g)
$$

defined by the formula $\Omega_{B}(X, Y)=-\omega(\mathbb{N} \bullet X, \lambda \times Y \mathbb{D}), X, Y \in \operatorname{Sec} T \mathcal{T}$.
PROPOSITION 4. $\llbracket \lambda_{0} X, \lambda \circ Y \rrbracket=\lambda \circ[X, Y]-\Omega_{B}(X, Y)$.
3. The Chern-Weil homomorphism for $\mathbf{\Phi}^{F}$. The groupoid Φ^{F} acts on the bundle g by the ad oint representation $A d^{g}$ defined by

$$
{A d^{G}}^{F}(h)=\left(\tau_{h}\right)_{*} u_{x}: q_{l x} \xrightarrow{\approx} g_{l y}, \quad h \in \Phi^{F}
$$

where $\tau_{h}: G_{x} \longrightarrow G_{y}, a \longmapsto h a h^{-1}, x=\alpha h, y=B h 。$
Let k / g^{*} be the k-symmetric power of \mathscr{g}^{*}. Denote by $\left(A d^{\mathcal{F}}\right)^{\vee}$ the action of Φ^{g} on k / g^{*} induced by $A d^{g}$. A section

$$
\Gamma \in \operatorname{Sec} \sqrt{k} / g^{*}
$$

is called $A^{\mathcal{F}}$-invariant if $\left(A^{\mathcal{F}}\right)^{v}(h)\left(\Gamma_{\alpha}\right)=\Gamma_{B h}$ for each $h \in \Phi^{\mathcal{F}}$. The set of all Ad ${ }^{g}$-invariant sections of the bundle k / g^{*} is denoted by

$$
\left(\sec \sqrt{k} / g^{*}\right)_{I^{\prime}}^{g}
$$

Cf course, $\oplus^{k}\left(\sec { }^{k} / g^{*}\right)_{I}^{F}$ forms an algebra.
If $\mathcal{F}=\{V\}$, then the letter \mathcal{F} in the symbols $A^{\mathcal{F}},\left(A d^{\mathcal{F}}\right)^{\vee}$ and $\left(\operatorname{Sec} V^{k} g^{*}\right)_{I}^{F}$ will be omitted.

We have $\left(\operatorname{Sec} V^{k} / g^{*}\right)_{I} \subset\left(\operatorname{Sec} V^{k} / g^{*}\right)_{I}{ }_{I}$.
PROPOSITION 5. Each Ad ${ }^{\text {g/ invariant section of } ~}{ }^{k} / g^{*}$ is equal to $\sum_{i} f^{i} \Gamma_{i}$ for some C^{∞}-functions f^{i} constant along the leaves of \mathcal{F} and for some Ad-invariant sections Γ_{i} •

PROPOSITION 6. The algebra $\oplus^{k}\left(\text { Sec } V^{k} g^{*}\right)_{I}$ of all Ad-invariant sections is canonically isomorphic to the algebra $\left(V g_{1 x}^{*}\right)_{I}$ of all invariant polynomials on $g_{1 x}$ with respect to the adjoint representation of G_{x} on $g_{1 x}, x \in V$. This isomorphism is built with the help of the family of isomorphisms $\operatorname{Ad}(h), h \in \Phi_{x}$.

Let $\lambda: T \mathcal{F} \longrightarrow A\left(\Phi^{\mathscr{F}}\right)$ be any connection in $A\left(\Phi^{\mathscr{I}}\right)$ and $\Omega_{B} \in \Omega^{2}(T \xi ; q)$ - its curvature base-form. We define the following homomorphism of algebras

$$
\gamma^{\mathfrak{g}}: \oplus^{k}\left(\operatorname{Sec} \vee^{k} g^{*}\right)_{I}^{F} \longrightarrow \Omega\left(\mathrm{~T}^{\mathcal{F}} ; \mathbb{R}\right), \Gamma \longmapsto \Gamma_{*}\left(\Omega_{B}, \ldots, \Omega_{B}\right),
$$

where $\Gamma_{\in S e c} \mathbb{k}^{k} g^{*}$ is treated as a symmetric k-linear homomorphism $g \times \ldots x g \rightarrow \mathbb{R}$ via the isomorphism $\quad V^{k} g^{*} \cong \mathcal{L}_{s}^{k}(q ; \mathbb{R})$,
$t_{1} \vee \ldots v t_{k} \longmapsto\left(\left(v_{1}, \ldots, v_{k}\right) \longmapsto \frac{1}{k!} \sum_{\sigma} t_{\sigma(1)}\left(v_{1}\right) \cdot \ldots \cdot t_{\sigma(k)}\left(v_{k}\right)\right)$
and $\Gamma_{*}\left(\Omega_{B}, \ldots, \Omega_{B}\right) \in \Omega^{2 k}(T \mathfrak{F} ; \mathbb{R})$ is defined by the formula
$\Gamma_{*}\left(\Omega_{B}, \ldots, \Omega_{B}\right)\left(x ; v_{1}, \ldots, v_{2 k}\right)$
$=\frac{1}{2^{k}} \sum_{\sigma} \operatorname{sgn} \sigma \Gamma_{x}\left(\Omega_{B}\left(x ; v_{\sigma(1)}, v_{\kappa(2)}\right), \ldots, \Omega_{B}\left(x ; v_{\sigma(2 k-1)}, v_{\sigma(2 k)}\right)\right)$.
Now, we define a differential operator

$$
\mathrm{d}^{\mathrm{TF}}: \Omega(\mathrm{TF} ; \mathbb{R}) \longrightarrow \Omega(\mathrm{TF} ; \mathbb{R})
$$

by (for a form Θ of degree q)

$$
\begin{aligned}
d^{T} \mathcal{F} Q\left(X_{0}, \ldots, X_{q}\right) & =\sum_{j=0}^{q}(-1)^{j_{X_{j}}\left(\Theta\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{q}\right)\right)} \\
& +\sum_{i<j}(-1)^{i+j^{M}}\left(\left[X_{i}, X_{j}\right], \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots\right) .
\end{aligned}
$$

Let $H(T F ; \mathbb{R})$ be the cohomology algebra of the complex

$$
\left(\Omega(T \mathcal{F} ; \mathbb{R}), d^{T \mathcal{F}}\right)
$$

We have the following two theorems which are paxticular cases of general theorems on the theory of cohomology of Pradines--type groupoids over foliations (see [6]).

THEOREVI 1. $a^{T} \tilde{\mathcal{T}}_{0} \gamma^{\mathcal{F}}=0$ 。
This theorem allows us to define the following homomorphism of algebras

$$
h_{\Phi^{F}}: \oplus^{k}\left(\operatorname{Sec} \sqrt{k} g^{*}\right)_{I}^{\mathcal{F}} \longrightarrow H(T \mathcal{F} ; \mathbb{R}), \Gamma \longmapsto\left[r^{\mathcal{F}}(\Gamma)\right]
$$

THEOREM 2. $h_{\Phi^{F}}$ is independent of the choice of connection.
DEFINITION. We shall call the homomorphism $h_{\Phi^{s}}$ the Chern--Weil homomorphism for $\Phi^{\mathcal{F}}$. Its image $\operatorname{Im~}_{\Phi^{F}}$ is called the Pontryagin algebra for Φ^{5} and denoted by

$$
\operatorname{Pont}\left(\boldsymbol{\Phi}^{\mathcal{F}}\right)
$$

REMARK. If $\mathcal{F}=\{V\}$, then the superposition

$$
\left(V g_{1 x}^{*}\right)_{I} \cong \oplus^{k}\left(\operatorname{Sec} V g^{k}\right)_{I} \longrightarrow H(T V ; \mathbb{R})=H_{d R}(V)
$$

is the classical Chern-Weil homomorphism for the p.f.b。 Φ_{x}.
4. A generalization of the Bott Vanishing Theorem. As an application of the characteristic classes described above we give THEOREM 3. (A generalization of the Bott Vanishing Theorem)
Let $\left\{\mathcal{F}, \mathcal{F}^{\prime}\right\}$ be a flag of foliations \mathcal{F} and \mathcal{F}^{\prime} on V. If

$$
T \mathcal{F}=T \mathcal{F}^{\prime} \oplus F
$$

then $\operatorname{Pont}^{k}\left(\boldsymbol{G L}(F)^{\mathfrak{F}}\right)=0$ for $k>2 \cdot \operatorname{rank} F$.

Proof. A connection λ in $\operatorname{GI}(F)^{\boldsymbol{F}}$ defines (see[5]) an operator (1)

$$
\nabla^{\lambda}: \operatorname{Sec} F \longrightarrow \Omega^{1}(T \mathcal{T} ; F)
$$

by the formula

$$
\begin{equation*}
\nabla_{v}^{\lambda} \sigma_{0}(\lambda v)\left(\tilde{\sigma}_{x}\right), \quad v \in(T F)_{I x}, \quad \sigma \in \operatorname{Sec} F \tag{2}
\end{equation*}
$$ where $\tilde{\sigma}_{x}:=\tilde{\sigma} \mid G L(F)_{x}: G L(F)_{x} \rightarrow F_{I_{x}}$ and $\tilde{\sigma}: \overline{G I}(F) \rightarrow F, h \mapsto h^{-1}\left(\sigma_{B h}\right)$

∇^{λ} is linear and fulfils the conditions (a) $\nabla_{f X}^{\lambda} \sigma=f \nabla_{X}^{\lambda} \sigma$,
(b) $\nabla_{X}^{\lambda} f \sigma=X(f) \sigma+f \nabla_{X}^{\lambda} \sigma$ where $X \in \operatorname{Sec} T \mathcal{F}, \sigma \in \operatorname{Sec} F, f \in C^{\infty}(V)$.

Any linear operator (1) such that (a) and (b) hold is called a covariant derivative in (F, \mathcal{F}) (or, after [3], a partial connection in F with respect to F).

LEMMA 1. The correspondence $\lambda \longmapsto \nabla^{\lambda}$ establishes a bijection between connections in $\mathcal{A}\left(G L(F)^{F}\right)$ and covariant derivatives in ($F, F)$.

Proof of lemma 1. It is sufficient to show that
(i) for $v \in(T \mathcal{F})_{I_{x}}, x \in V$, a vector $\lambda v \in A\left(G L(F)^{\mathcal{F}}\right)_{\left.\right|_{x}}$ satisfying $\gamma(\lambda v)=v$ is, by (2), uniquely determined,
(ii) the mapping $\lambda: T \mathcal{F} \longrightarrow A\left(G I(F)^{\mathcal{F}}\right), v \longmapsto \lambda v$, is of the C^{∞} --class.
(i) and (ii) easily follow from local calculations.

By a curvature tensor of a covariant derivative ∇ in (F, \mathcal{F}) we mean a tensor

$$
R \in \Omega^{2}(T \mathcal{F} ; \operatorname{Hom}(F ; F))
$$

defined by the formula $R_{X, Y}{ }^{\sigma}=\nabla_{X} \nabla_{Y}{ }^{\sigma}-\nabla_{Y} \nabla_{X}{ }^{\sigma}-\nabla_{[X, Y]}{ }^{\sigma}$ for $X, Y \in \operatorname{Sec} T \mathcal{F}, \sigma \in \operatorname{Sec} F$.

LEMMA, 2- The curvature tensor R of ∇^{λ} is equal to the curvature base-form Ω_{B} of λ.

Proof of lemma 2. By proposition 4, we have

$$
\begin{aligned}
R_{X, Y} & =\lambda X\left((\lambda Y)(\tilde{\sigma})^{\sim}\right)-\lambda Y\left((\lambda X)(\tilde{\sigma})^{\sim}\right)-(\lambda[X, Y])(\tilde{\sigma}) \\
& =(\mathbb{\mathbb { E }} \lambda, \lambda Y \mathbb{Y}-\lambda[X, Y])(\tilde{\sigma})=-\Omega_{B}(X, Y)(\tilde{\sigma})=\Omega_{B}(X, Y)(\sigma) .
\end{aligned}
$$

Continuing the proof of theorem 3, we construct (analogously to Bott [1]) a covariant derivative in (F,F) whose curvature tensor R has the property $R_{X, Y}=0$ for all $X, Y \in S e c T T^{\prime}$. For the purpose, take any covariant derivative $\bar{\nabla}$ in (F, F). For X $\in \operatorname{Sec}^{T \mathcal{F}}=$ $=\operatorname{Sec} T F^{\prime} \oplus \operatorname{Sec} F$, write $X=X_{\mathcal{F}^{\prime}}+X_{F}$ where $X_{\mathcal{F}^{\prime}} \in \operatorname{Sec} T F^{\prime}$ and $X_{F} \in \operatorname{Sec} F$.

Then define $\nabla_{X} \sigma=\pi\left[X_{\mathcal{F}}, \sigma\right]+\bar{\nabla}_{X_{F}} \sigma$ for $X \in \operatorname{Sec} T F, \sigma \in \operatorname{Sec} F$, where $\pi: T \mathscr{F}^{\prime} \oplus F \rightarrow F$ is the projection onto the second factor. It is not difficult to see that this formula defines a covariant derivative in (F, F) which fulfils therequirement condition. By lemma 1, there exists a connection λ in $A\left(G L(F)^{F}\right)$ such that $\nabla^{\lambda}=\nabla$. By lemma 2, the curvature base-form Ω_{B} of λ has the property $\Omega_{B}(X, Y)=0$ for all $X, Y \in S e c T \mathcal{F}^{\prime}$.

Using the decomposition $(T \mathscr{F})_{I_{X}}=\left(T \mathcal{F}^{\prime}\right)_{I_{X}} \oplus F_{I X}$, we see that $\gamma^{g}(\Gamma)=0$ for $\Gamma \in\left(\operatorname{Sec} V g^{*}\right)_{I}^{g}$ such that $k>r a n k F$.

REMARK. Let $\Phi=\boldsymbol{G I}(F)$ and let F be as in theorem 3. By remark 33 from [5.], we have that the Chern-Weil homomorphisms $h_{\Phi_{x}}, h_{\Phi_{x}^{F}}$ of p.f.b.'s Φ_{x} and $\Phi_{x^{y}}^{\mathscr{y}}$, respectively, and $h_{\Phi^{x}}$ of the Pradines-type groupoid $\boldsymbol{\Phi}^{\mathfrak{F}}$ are connected by the commuting diagram

For k rrank F, the bottom row is zero by the classical Bott Vanishing Theorem applied to the foliation $\mathcal{F}^{\prime} \mid L_{x}$ of $L_{x}, x \in V$, which - of course - also follows from the vanishing of the middle row.

REFERENCES．

［1］R．B o t t，Lectures on characteristic classes and foliatio－ ns，Lecture Notes in Miath．Vol 79，Springer－Verlag，Berlin， Heidelberg，New York（1972），
［21 Ch．Ehresmannt Les connexions infinitesimales dans un espace fibre differentiable，Colloq．Topologie（Bruxelles） 1950，Liege 1951，
［31 F．K a m b e r，P h．T o n d e ur，Foliated Bundles and Cha－ racteristic Classes，Lectures Notes in Math．Vol 493，Sprin－ ger－Verlag，Berlin，Heidelberg，New York（1975），
［4］J．K u b a r ski，Smooth groupoids over foliations and the－ ir algebroids．Part 1，Preprint Nr 1，May 1986，Institute of Mathematics，Technical University of モódź，
［51 ，Pradines－type groupoids over foliations； cohomology，connections and the Chern－Weil homomorphism，Pre－ print Nr 2，August 1986，Institute of Mathematics，Technical University of モódź，
［6］J．Pra d i n e s，Theorie de Lie pour les groupoides diffe－ rentiables．Calcul differential dans la categorie des groupo－ ides infinitesimaux，C．R．Acad．Sc．Paris，t． 264 （1967），p．245－ －248，
［7］—— Theorie de Lie pour les groupoides diffe－ rentiables，Atti del Convegna Internazionale di Geometria Di－ fferenziale（Bologna），28－30，IX，1967，
［8】 N．V．Q u e，Du prolongement des eapaces fibres et des struc－ tures infinitesimales，Ann．Inst．Fourier．Grenoble，17，1， 1967，p．157－223，
［9］R．S i k o r ski，Abstract covariant derivative，Colloq。 Math． 18 （1967），p．251－272．

Institute of Mathematics Technical University of モódź

Al．Politechniki 11
90－924 モód́́
P O L A N D

